(upbeat music) - [Interviewer] So what does a data science team need to thrive? Let's say I put a team into place. What tools or resources will they need? - Well, the first thing that a data science team needs is actually they need to be part of the team. The broader team. Most people try to say, "Hey look, I've got a "data science team," and they just put them in. And then that team gets what you might call is organ rejection, where the antibodies attack it.
And so what you need them to have is you have to create pathways for them to actually be part of every team, and be able to say, "Hey, how can I add value here?" "What's another way we might be able to work?" A data science team without access to data is not much of a team. (DJ laughing) And it's surprising how often a data science team is brought into a company, or people take incredible efforts to build a team, and they don't have access to any data. So once that has happened, and the team has access to the data, they have to be able to clean the data.
It's still, to this day, that it's about 80% of the work that a data scientist is doing, just cleaning data. Then, once they've cleaned the data, how can they actually have context around the problem to work with that data? What other tools, do they need more of a Hadoop style tool or can they do it with smaller data? Or maybe it's they need to use technologies like Kafka to stream and move around the data very quickly. There's so much technology out there. That's part of the beauty of the, it's less about the questions of what technology they have, but rather the problem that I often refer to as the toolbox problem.
And what happens is a company or an organization typically says, well, you get to have one tool. When you call your plumber up, your plumber doesn't say, "Well, I'm going to bring one tool over." They bring a whole toolbox. The same way the data scientists and technology teams need a toolbox, a suite of tools. And so how do you allow them to have that suite of tools to work, and operate, and build and try and test things? And then, how do you, once you test it, how do you learn collectively? And so, what I'm arguing for is a much more ambiguous data science team approach where the team is actually bled into all portions of the operational structure.
And seeing where, you know, good things can happen. And that basis of that first starts with democratization of data, good tooling and technology, deep curiosity to actually figure out what are the insights, and then creativity to turn that into new ways of operating within the organization. (upbeat music)
Author
Updated
9/11/2019Released
10/3/2018Skill Level Intermediate
Duration
Views
Related Courses
-
Introduction
-
Previous Installments
-
What were you like as a kid?3m 17s
-
How is data used in the US?3m 55s
-
How is data used worldwide?1m 38s
-
How can we make data secure?3m 26s
-
What is AI?1m 37s
-
What is a dynamic range?2m 1s
-
Wrapping up1m 5s
-
- Mark as unwatched
- Mark all as unwatched
Are you sure you want to mark all the videos in this course as unwatched?
This will not affect your course history, your reports, or your certificates of completion for this course.
CancelTake notes with your new membership!
Type in the entry box, then click Enter to save your note.
1:30Press on any video thumbnail to jump immediately to the timecode shown.
Notes are saved with you account but can also be exported as plain text, MS Word, PDF, Google Doc, or Evernote.
Share this video
Embed this video
Video: What does a data science team need to thrive?