Start learning with our library of video tutorials taught by experts. Get started

Creating Simulations in MassFX and 3ds Max

Understanding the difference between rigid and soft bodies


From:

Creating Simulations in MassFX and 3ds Max

with Brian Bradley

Video: Understanding the difference between rigid and soft bodies

When it comes to creating dynamic simulations, there are two object types that you'll probably hear mentioned on a regular basis: rigid bodies and soft bodies. These labels, or descriptions, refer to the type of objects that a particular simulation has been designed to work with, or, more accurately, to re-create. The term rigid bodies refers to the simulation of solid unyielding objects whose subcomponents--that is, vertices, faces, and edges of the object--do not deform in any way during the course of the simulation.
Expand all | Collapse all
  1. 3m 27s
    1. Welcome
      58s
    2. Working with the exercise files
      46s
    3. Setting up the 3ds Max project structure
      1m 43s
  2. 39m 20s
    1. Why simulate and not animate?
      3m 38s
    2. A look at gravity and drag
      3m 55s
    3. Understanding volume, mass, and density
      3m 45s
    4. What are Newton's laws of motion?
      3m 20s
    5. Finding believable frames per second and substeps
      3m 5s
    6. Understanding the difference between rigid and soft bodies
      3m 28s
    7. More about rigid body types
      3m 32s
    8. How collisions are calculated
      4m 35s
    9. Learning the difference between concave and convex meshes
      6m 24s
    10. What is a constraint and how do we use it?
      3m 38s
  3. 24m 20s
    1. A look at the MassFX and the 3ds Max user interfaces
      5m 52s
    2. Exploring the MassFX workflow
      5m 14s
    3. Discovering ground collision and gravity
      4m 49s
    4. Adjusting substeps and solver iterations
      3m 43s
    5. Using the Multi-Editor and the MassFX Visualizer
      4m 42s
  4. 44m 11s
    1. Breaking down the shot
      4m 51s
    2. Setting up the launchers
      3m 59s
    3. Setting up the drop system
      4m 30s
    4. Prepping the cans
      3m 33s
    5. Refining the simulation on the launchers
      5m 9s
    6. Refining the simulation on the colliders
      6m 5s
    7. Baking out the simulation for rendering
      5m 37s
    8. Reviewing the simulation with an animation sequence
      5m 3s
    9. Adding an animation override
      5m 24s
  5. 33m 32s
    1. Adding a rigid constraint and creating breakability
      8m 3s
    2. Creating a moving target with the Slide constraint
      4m 47s
    3. Creating springy targets with the Hinge constraint
      5m 59s
    4. Spinning targets using the Twist constraint
      4m 57s
    5. Creating crazy targets with the Ball & Socket constraint
      4m 58s
    6. Constructing a MassFX Ragdoll
      4m 48s
  6. 36m 51s
    1. Applying the mCloth modifier and pinning the hammock
      5m 55s
    2. Setting up the hammock's physical properties
      5m 39s
    3. Working with the mCloth interaction controls
      6m 14s
    4. Attaching the hammock to animated objects
      4m 5s
    5. Putting a rip in mCloth
      6m 14s
    6. Using mCloth to create a rope object
      4m 53s
    7. Creating a soft body object
      3m 51s
  7. 14m 47s
    1. Adding forces to a simulation
      5m 27s
    2. Putting forces to practical use
      5m 33s
    3. Using forces with mCloth
      3m 47s
  8. 35m 27s
    1. Walking through mParticles
      4m 38s
    2. Using fracture geometry
      6m 0s
    3. Creating breakable glue: Part 1
      4m 19s
    4. Creating breakable glue: Part 2
      5m 19s
    5. Creating a gloopy fluid: Part 1
      4m 14s
    6. Creating a gloopy fluid: Part 2
      4m 41s
    7. Adding forces to mParticles
      6m 16s
  9. 1m 5s
    1. What's next?
      1m 5s

Watch this entire course now—plus get access to every course in the library. Each course includes high-quality videos taught by expert instructors.

Become a member
Please wait...
Creating Simulations in MassFX and 3ds Max
3h 53m Intermediate Feb 26, 2013

Viewers: in countries Watching now:

This course introduces basic physics simulation principles in Autodesk 3ds Max using MassFX, a system that makes it cost effective to animate rigid body objects, cloth, and particle systems. Author Brian Bradley introduces basic concepts such as gravity, drag, volume, and density, and how Newton's Laws of Motion can help you understand the interaction of objects with these unseen forces. Using the purpose built scene, Brian walks through the tools and features of the MassFX (PhysX) system, applying the principles discussed as he goes. Along the way, discover how to combine rigid bodies and constraints, mCloth fabrics, and mParticles geometry to create fairground-style effects.

Topics include:
  • Setting up your 3ds Max project
  • Understanding volume, mass, and density
  • Learning the difference between concave and convex meshes
  • Discovering Ground Collision and Gravity
  • Baking out a simulation for rendering
  • Adding an animation override
  • Adding Rigid constraints and creating breakability
  • Creating springy targets with the Hinge constraint
  • Spinning targets with Twist
  • Working with mCloth
  • Putting a rip in mCloth
  • Adding forces to a simulation
  • Using fracture geometry in mParticles
Subjects:
3D + Animation Particles Visual Effects
Software:
3ds Max
Author:
Brian Bradley

Understanding the difference between rigid and soft bodies

When it comes to creating dynamic simulations, there are two object types that you'll probably hear mentioned on a regular basis: rigid bodies and soft bodies. These labels, or descriptions, refer to the type of objects that a particular simulation has been designed to work with, or, more accurately, to re-create. The term rigid bodies refers to the simulation of solid unyielding objects whose subcomponents--that is, vertices, faces, and edges of the object--do not deform in any way during the course of the simulation.

Now, in the real world very few such objects exist. Crash a large solid truck into a solid brick wall and even at relatively low speeds, some parts of both objects will deform, probably even break. However, in order to create a predictable and repeatable simulation environment, such effects are not allowed to occur inside a rigid body simulation. If we wanted to see rigid body dynamics at work, all we would need to do would be to look at pretty much any action- adventure film, game, or TV show these days and we would probably see an example of rigid body dynamics at work.

One often-seen use is the destruction and collapse of solid objects such as buildings and walls. These objects are first broken, or fractured, into multiple pieces and then their motion is simulated using rigid body dynamics. Artists can, just as easily though, use rigid body simulation tools for much less spectacular but equally important production tasks such as setting up otherwise time-consuming aspects of a 3D scene: a jar full of coins or sweets, a toy chest full of cars or spaceships, an alleyway strewn with debris and litter.

These are processes that could take considerable time to work through manually, but that can be handled very easily with rigid body simulation tools. Soft body objects, by contrast, behave in a very different manner--very different that is as compared to their rigid body counterparts. In a soft body simulation, the shape of an object is actually required to change over time. This can be accomplished because the relative distance of any two points on a soft body object are not considered to be fixed as they are in a rigid body simulation. While it's deforming though, a soft body object is usually expected to retain its general shape and volume to some degree, so as to keep it recognizable to the viewer.

Now, the scope of, or uses of, our soft body dynamics, again, really is quite broad-ranging. This could be the simulation of soft organic materials, and here we might think of muscle and fat, even hair and vegetation, to other parts more obvious deformable object types, such as clothing and fabric in general. Which of these simulation types--that is, rigid body or soft body--we choose to work with will naturally depend entirely upon the type of object and the motion that we are trying to emulate. The good news with the MassFX system in 3ds Max is that we can use both rigid and soft body objects inside the same simulation, even having them interact very nicely indeed with one another.

One thing we do need to keep in mind as we produce our simulations though, is that, typically speaking, the idea behind tool such as MassFX is to provide a visually plausible emulation rather than a super-accurate scientific or engineering simulation. In our next video, we will look a little more closely at rigid body objects and consider three rigid body types that are available to work with inside our simulations.

There are currently no FAQs about Creating Simulations in MassFX and 3ds Max.

Share a link to this course
Please wait... Please wait...
Upgrade to get access to exercise files.

Exercise files video

How to use exercise files.

Learn by watching, listening, and doing, Exercise files are the same files the author uses in the course, so you can download them and follow along Premium memberships include access to all exercise files in the library.
Upgrade now


Exercise files

Exercise files video

How to use exercise files.

For additional information on downloading and using exercise files, watch our instructional video or read the instructions in the FAQ.

This course includes free exercise files, so you can practice while you watch the course. To access all the exercise files in our library, become a Premium Member.

Upgrade now

Are you sure you want to mark all the videos in this course as unwatched?

This will not affect your course history, your reports, or your certificates of completion for this course.


Mark all as unwatched Cancel

Congratulations

You have completed Creating Simulations in MassFX and 3ds Max.

Return to your organization's learning portal to continue training, or close this page.


OK
Become a member to add this course to a playlist

Join today and get unlimited access to the entire library of video courses—and create as many playlists as you like.

Get started

Already a member?

Become a member to like this course.

Join today and get unlimited access to the entire library of video courses.

Get started

Already a member?

Exercise files

Learn by watching, listening, and doing! Exercise files are the same files the author uses in the course, so you can download them and follow along. Exercise files are available with all Premium memberships. Learn more

Get started

Already a Premium member?

Exercise files video

How to use exercise files.

Ask a question

Thanks for contacting us.
You’ll hear from our Customer Service team within 24 hours.

Please enter the text shown below:

The classic layout automatically defaults to the latest Flash Player.

To choose a different player, hold the cursor over your name at the top right of any lynda.com page and choose Site preferencesfrom the dropdown menu.

Continue to classic layout Stay on new layout
Welcome to the redesigned course page.

We’ve moved some things around, and now you can



Exercise files

Access exercise files from a button right under the course name.

Mark videos as unwatched

Remove icons showing you already watched videos if you want to start over.

Control your viewing experience

Make the video wide, narrow, full-screen, or pop the player out of the page into its own window.

Interactive transcripts

Click on text in the transcript to jump to that spot in the video. As the video plays, the relevant spot in the transcript will be highlighted.

Thanks for signing up.

We’ll send you a confirmation email shortly.


Sign up and receive emails about lynda.com and our online training library:

Here’s our privacy policy with more details about how we handle your information.

Keep up with news, tips, and latest courses with emails from lynda.com.

Sign up and receive emails about lynda.com and our online training library:

Here’s our privacy policy with more details about how we handle your information.

   
submit Lightbox submit clicked